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Secondary dimension SI unit BG unit Conversion factor
Area {L?} m? ft? 1 m? = 10.764 ft*
Volume {L*} m? ft? 1 m® = 35315 ft*
Velocity {LT '} m/s ft/s 1 ft/s = 0.3048 m/s
Acceleration {LT %} m/s? ft/s* 1 ft/s> = 0.3048 m/s”
Pressure or stress {ML™'T 2} Pa = N/m’ 1bf/ft? 1 Ibf/ft> = 47.88 Pa
Angular velocity {7 '} st s7! Is'=1s"
Energy, heat, work {ML>T 2} J=N-m ft - 1bf 1 ft - Ibf = 1.3558 J
Power {ML>T 3} W = J/s ft - Ibf/s 1 ft - Ibfls = 1.3558 W
Density {ML %} kg/m® slugs/ft® 1 slug/ft® = 515.4 kg/m®
Viscosity (ML™'T™ "} kg/(m - s) slugs/(ft - s) 1 slug/(ft - s) = 47.88 kg/(m - s)
Specific heat {L*T 20"} m%/(s - K) f?/(s> - °R) 1 m%(s* - K) = 5.980 ft*/(s* - °R)

Mach number G#is -

Vith o FE L Qdal s = (RT)* = 3u3m/e]



Chapter 2
). Pressure Fore on o Huid Element |
i ,»M Arx_rajatz (7’ acx)awz 3 dnndz.

- = TP ISttty

2, Eﬁjmilibr‘ywm o)c o Fuid Elemer .
BHEEED  F - eihdyds > J = Fi 3 '-fw”@/?

AFATES R IR AF fvs = (3 L SV - ST R, Vokst
%Vx%;f/eﬁ URED . Fot) °
S ]%7%: ?"“ (f{;%ﬁ%)

3 Fressure Distribwtion jn Rigidl -Body Motion .

S e l
s AN Eﬁ)’%ﬁ G=Los+geoe)]”
a‘ S ‘0% AT Sk €S
EXAMPLE 2.13

A drag racer rests her coffee mug on a horizontal tray while she accelerates at 7 m/s>.
The mug is 10 cm deep and 6 cm in diameter and contains coffee 7 cm deep at rest.
(a) Assuming rigid-body acce 1on of the coffee, determine whether it will spill out of
the mug. (b) Calculate the g ressure in the corner at point A if the density of coffee
is 1010 kg/m’.



Solution

* System sketch: Figure E2.13 shows the coffee tilted during the acceleration.

—

o
=

E2.13
, iy , . . "
» Assumptions: Rigid-body horizontal acceleration, a, = 7 m/s”. Symmetric coffee cup.
* Property values: Density of coffee given as 1010 kg/m3.
e Approach (a): Determine the angle of tilt from the known acceleration, then find the
height rise.
 Solution steps: From Eq. (2.39), the angle of tilt is given by

_, 7.0 m/s?

osimis >

14
0 = tan ' = |= tan
&

If the mug is symmetric, the tilted surface will pass through the center point of the rest
position, as shown in Fig. E2.13. Then the rear side of the coffee free surface will rise an
amount Az given by

Az = (3 cm)(tan 35.5°) = 2.14 cm < 3 cm therefore no spilling  Ans. (a)

* Comment (a): This solution neglects sloshing, which might occur if the start-up is
uneven. e

e Approach (b): The pressure at A can be computed from Eq. (2.40), using the perpen-
dicular distance As from the surface to A. When at rest, py = pghyese = (1010 kg/m3)
(9.81 m/s%)(0.07 m) = 694 Pa. When accelerating,

pa = pG As = (10|okg)[\/(9.81)2 + (7.0)*[[(0.07 + 0.0214) c0s 35.5°] =~ 906 Pa Ans. (b)

3
m

e Comment (b): The acceleration has increased the pressure at A by 31 percent. Think
about this alternative: why does it work? Since a, = 0, we may proceed vertically down
the left side to compute

Pa = p8Gsurr — 24) = (1010 kg/m*)(9.81 m/s%)(0.0214 + 0.07 m) = 906 Pa
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EXAMPLE 2.14

The coffee cup in Example 2.13 is removed from the drag racer, placed on a tur, e, and
I t%’fgd about its central axis until a rigid-body mode occurs. Find (a) the @gtﬁi%lm
that will cause the coffee to just reach the lip of the cup and (b) the gage pressure at point
A for this condition.



Solution

The cup contains 7 cm of coffee. The remaining distance of 3 cm up to the lip must equal
the distance //2 in Fig. 2.23. Thus

h ~ QR 0%0.03 m)’
®) S TR
Solving, we obtain
02 = 1308 or Q) = 36.2 rad/s = 345 r/min Ans. (a)

To compute the pressure, it is convenient to put the origin of coordinates r and z at the bot-
tom of the free-surface depression, as shown in Fig. E2.14. The gage pressure here is py = 0,
and point A is at (r, z) = (3 cm, —4 cm). Equation (2.46) can then be evaluated:
|
, | Pa =0 — (1010 kg/m*)(9.81 m/s%)(—0.04 m)
cm
(_;_)Q li):) + 3(1010 kg/m?)(0.03 m)*(1308 rad*/s?)
= 396 N/m? + 594 N/m* = 990 Pa Ans. (b)

& )
h—:‘ This is about 43 percent greater than the still-water pressure p, = 694 Pa.
3cm—<3cm
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EXAMPLE 3.2

The balloon in Fig. E3.2 is being filled through section 1, where the area is A;, velocity is
V1, and fluid density is p;. The average density within the balloon is p,(7). Find an expres-
sion for the rate of change of system mass within the balloon at this instant.

Average
density:p,(1)

Solution

CS expands outward
with balloon radius R(r)

E3.2

System sketch: Figure E3.2 shows one in}l\et. no e)%'ts. The control volume and system
expand together, hence the relative velocity V, = 0 on the balloon surface,

Assumptions: Unsteady flow (the control volume mass increases), defgmable control
surface, one-dimensional inlet conditions.

Approach:  Apply Eq. (3.16) with V, = 0 on the balloon surface and V,, = V, at the inlet.
Solution steps: The property being studied is mass, B =m and B = dm/dm = unity.
Apply Eq. (3.16). The volume integral is evaluated based on average density p,, and the
surface integral term is negative (for an inlet):

<@) —EU dﬂf)+J (V )dA—1< 4—"12")— AV A
dr )y dr\ )" G ous =\ P P e

Ccv cs

Comments: The relation given is the answer to the question that was asked. Actually,
by the conservation law for mass, Eq. (3.1), (dm/dt)s = 0, and the answer could be
rewritten as

d 5 3
E (p, R) = E piAV,

This is a first-order ordinary differential equation relating gas density and balloon radius.
It could form part of an engineering analysis of balloon inflation. It cannot be solved with-
out further use of mechanics and thermodynamics to relate the four unknowns py,, p;, Vi,
and R. The pressure and temperature and the elastic properties of the balloon would also
have to be brought into the analysis.
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EXAMPLE 3.3

Write the conservation-of-mass relation for steady flow through a streamtube (flow
everywhere parallel to the walls) with a single one-dimensional inlet 1 and exit 2
(Fig. E3.3).

Solution

Streamtube ; . . . e
control volume For steady flow Eq. (3.24) applies with the Wt.
E3.3 m = p,A\V, = p,A,V, = const_

Thus, in a streamtube in steady flow, the mass flow is across every section of the
tube. If the density is constant, then

Q =A,V, =A,V, = const or V,=—V,

The volume flow is constant in the tube in steady incompressible flow, and the velocity
increases as the section area decreases. This relation was derived by Leonardo da Vinci
in 1500.

EXAMPLE 34

EEH
For steady viscous flow through a circular tube (Fig. E3.4), the axial velocity profile is given
approximately by

u(r) F\
u= U()(l = E)

—_—

X
U, so that u varies from zero at the wall (r = R), or no slip, up to a maximum u = Uy at the
centerline r = 0. For highly viscous (l%minax) flow m = 3, while for less viscous (tu%%lem)
flow m =~ L. Compute the average velocity if the density is constant.
u =0 (no slip)

K34 Solution

The average velocity is defined by Eq. (3.32). Here V =iu and n =i, and thus V * n = u.
Since the flow is symmetric, the differential area can be taken as a circular strip dA = 2 7rr dr.
Equation (3.32) becomes

1 1 (° r\*
Ve =ZjudA = WL U(,<l -E) 2mrr dr

2
o ——= Ans.
o Vo = Vo e + m) "



Tank area A, EXAMPLE 3.5

A2
The tank in Fig. E3.5 is being filled with water by two one-dimensional inlets. Air is trapped
at the top of the tank. The water height is 4. (a) Find an expression for the change in water

|
I
b | height dh/dt. (b) Compute dh/dt if D, =1 in, D, =3 in, V, = 3 ft/s, V, =2 ft/s, and
’ | A, = 2 ft*, assuming water at 20°C.
H ; p, = Solution
6 A suggested control volume encircles the tank and cuts through the two inlets. The flow
@ within is unsteady, and Eq. (3.22) applies with no outlets and two inlets:
) R
____________ ) d
Fixed CS ). = pdV ) — pAV, — pAV, =0 1)
dr\ ).,

Now if A, is the tank cross-sectional area, the unsteady term can be evaluated as

follows: o ﬁ(g/'ﬁ 2 ‘

d d d_ N\ dh
= V) == (oAb + — — )] = pyA—
dt(vad ) 5 PAR + [P A(H — B)] = p, Ay 2

The p, term vanishes because it is the rate of change of air mass and is zero because the
air is trapped at the top. Substituting (2) into (1), we find the change of water height

@ _ piAVy + AV,

i P Ans. (a)
For water, p; = p, = p,,, and this result reduces to
dh AV +AV, O+ O 3)
dt A, A,
l)) The two inlet volume flows are
0, = AV, = u( 1’3 ft/s) = 0.016 ft*/s
0, = A,V, = (S (2 ft/s) = 0.098 ft’/s
Then, from Eq. (3),
dh  (0.016 + 0.098) ft/
UL T L S T o

dt e

Suggestion: Repeat this problem with the top of the tank open.
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EXAMPLE 3.7

A fixed control volume of a streamtube in steady flow has a uﬁ};&r?n inlet flow (p;, Ay, V)
and a uniform exit flow (p,, A,, V,), as shown in Fig. 3.7. Find an expression for the net
force on the control volume.

Ven=0

mV,
Fixed ZF = (V- V)
control
volume ()
Vi mV,

(a) (b)

Solution

Equation (3.40) applies with one inlet and exit:
EF = mzvz - mlvl = (P, A V)V, — (pA V)Y,

The volume integral term vanishes for steady flow, but from conservation of mass in
Example 3.3 we saw that

m; = m, = m = const
Therefore a simple form for the desired result is
SFE=mV,-V) Ans.

This is a vector relation and is sketched in Fig. 3.7b. The term 3 F represents the net force
acting on the control volume due to all causes; it is needed to balance the change in momen-
tum of the fluid as it turns and decelerates while passing through the control volume.




EXAMPLE 3.9

A water jet of velocity V; impinges normal to a flat plate that moves to the right at velocity
V., as shown in Fig. 3.9a. Find the force required to keep the plate moving at constant veloc-
ity if the jet depsity is 1000 kg/m?, the jet area is 3 cm? and V; and V,. are 20 and 15 m/s,
respectively. Neglect the weight of the jet and plate, and assume steady flow with respect to
the moving plate with the jet splitting into an equal upward and downward half-jet.

Solution

The suggested control volume in Fig. 3.9a cuts through the plate support to expose the
desired forces R, and R,. This control volume moves at speed V, and thus is fixed relative
to the plate, as in Fig. 3.95. We must satisfy both mass and momentum conservation for the
assumed steady flow pattern in Fig. 3.9b. There are two outlets and one inlet, and Eq. (3.30)

applies for mass conservation:

Moy = Mip

or p1A1Vi + poAVa = piAi(V; = Vo) (1)

We assume that the water is incompressible p; = p, = p;, and we are given that A; = A, = %A/.
Therefore Eq. (1) reduces to

Vi+Voa=2V,-V) (2)

Strictly speaking, this is all that mass conservation tells us. However, from the syxn{ﬁ\etry
of the jet deflection and the neglect of gravity on the fluid trajectory, we conclude that the
two velocities V; and V, must be equal, and hence Eq. (2) becomes

Vi=V,=V, -V, 3)

This equality can also be predicted by Bernoulli’s equation in Sect 3.5. For the given numer-
ical values, we have

Vi =V,=20—15=5m/s

Now we can compute R, and R, from the two components of momentum conservation.
Equation (3.40) applies with the unsteady term zero:

EEr =N = ”"l“l + mzuz i rhjuj 4)

where from the mass analysis, m, = m, = ym; = 5p;A(V; — V,). Now check the flow direc-
tions at each section: u; = u, = 0, and u; = V; — V. =5 m/s. Thus Eq. (4) becomes

R, = —mu; = —[pA(V; = V)I(V; = Vo) (5)

(a) (b)



For the given numerical values we have
R, = —(1000 kg/m*)(0.0003 m*)(5 m/s)*> = —7.5 (kg - m)/s”> = —=7.5N  Ans.

This acts to the left; that is, it requires a restraining force to keep the plate from accelerat-
ing to the right due to the continuous impact of the jet. The vertical force is

Fy = R, = my, + myy, — my;

Check directions again: v; = V;, v, = — V5, v; = 0. Thus
Ry = m(V)) + my(=Vy) = i (Vy = V) ©)

But since we found earlier that V| = V,, this means that R, = 0, as we could expect from
the symmetry of the jet deflection.” Two other results are of interest. First, the relative
velocity at section 1 was found to be 5 m/s up, from Eq. (3). If we convert this to absolute
motion by adding on the control-volume speed V. = 15 m/s to the right, we find that the
absolute velocity V; = 15i + 5j m/s, or 15.8 m/s at an angle of 18.4° upward, as indicated in
Fig. 3.9a. Thus the absolute jet speed changes after hitting the plate. Second, the computed
force R, does not change if we assume the jet deflects in all radial directions along the plate
surface rather than just up and down. Since the plate is normal to the x axis, there would still
be zero outlet x-momentum flux when Eq. (4) was rewritten for a radial deflection condition.

S Momertum Flux  Cowection Foutor
= o wia= Vo= BCA o

The turbulent correction factors have the following range of values:
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EXAMPLE 3.23

A hyél‘%%ﬁ?{r?c power plant (Fig. E3.23) takes in 30 m%/s of water through its turbine and
discharges it to the atmosphere at V, = 2 m/s. The head loss in the turbine and penstock
system is hy= 20 m. Assuming turbulent flow, @ = 1.06, estimate the power in MW

extracted by the turbine.

Solution

We neglect viscous work and heat transfer and take section 1 at the reservoir surface

(Fig. E3.23), where V|, = 0, p; = pam, and z; = 100 m. Section 2 is at the turbine

outlet.
@ z; =100 m
—_—
\%ﬁ )
) = Om
2 /s
Turbine =
E3.23
The steady flow energy equation (3.75) becomes, in head form,
2 2
ﬂ+a‘—v'+z,=&+a2—vz+zz+h,+hf
Yy 2 2g
P. . 1.06(0) P.  1.06(2.0 m/s)’
= T 0D === 4 —=—————=F Qmn aF [}, 37 20
y | 209.81) e T 2081 ) R m

The pressure terms cancel, and we may solve for the turbine head (which is positive):
h, =100 — 20 — 0.2 = 79.8 m
The turbine extracts about 79.8 percent of the 100-m head available from the dam. The total
power extracted may be evaluated from the water mass flow:
P = mw, = (pQ)(gh,) = (998 kg/m>)(30 m*/s)(9.81 m/s*)(79.8 m)
=234 E6kg-m%/s’ = 234 E6N - m/s = 23.4 MW Ans.

The turbine drives an electric generator that probably has losses of about 15 percent, so the
net power generated by this hydroelectric plant is about 20 MW.
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EXAMPLE 3.16

A 10-cm fire hose with a 3-cm nozzle discharges 1.5 m*/min to the atmosphere. Assum-
ing f\ri/cQo_/nl\esi flow, find the force Fp exerted by the flange bolts to hold the nozzle on
the hose.

Solution

We use Bernoulli’s equation and continuity to find the pressure p; upstream of the nozzle,
and then we use a control volume momentum analysis to compute the bolt force, as in

Fig. E3.16.
Fp ~—
PIE
Fy ~—

/N
f————— = 1

2
1

0

O :J\\\ZZ

|
g | B |
Water: :

1000 kg/m? | _Pa=0(eage) l_ 0
——
| ——- P
| D,=3cm 1\ *
| X
| 2 b P/ 0
D, =10cm 841 P L L=p
L J cv Control volume

(@) (b)
E3.16



The flow from 1 to 2 is a constriction exactly similar in effect to the venturi in Example 3.15,
for which Eq. (1) gave

p1=p2+3p(V3 = VD) 4@%%’1 1/37f5 (1)
The velocities are found from the known flow rate Q = 1.5 m*/min or 0.025 m?/s:
yo_Q _ 0025 m*/s
A, (w/4)(0.03 m)?

_0 0.025 m¥/s
A, (w/4)(0.1 m)*

= 354 m/s

v, =32m/s

We are given p, = p, = 0 gage pressure. Then Eq. (1) becomes
2(1000 kg/m?)[(35.4% — 3.2%)m?¥s?]
620,000 kg/(m - s*) = 620,000 Pa gage

P

The control volume force balance is shown in Fig. E3.165:

EFX = —Fp + p/A,

and the zero gage pressure on all other surfaces contributes no force. The x-momentum flux is
+mV, at the outlet and —mV/, at the inlet. The steady flow momentum relation (3.40) thus gives

e

or Fg=pA, — ’h(vz = \%) )

—Fp+ pA =m(V, — V)

Substituting the given numerical values, we find
m = pQ = (1000 kg/m*)(0.025 m*/s) = 25 kg/s

w > m 2 2
Ay =D} = (0.1 m)’ = 0.00785 m

Fj = (620,000 N/m?)(0.00785 m*) — (25 kg/s)[(35.4 — 3.2)m/s]
= 4872 N — 805 (kg - m)/s> = 4067 N (915 Ibf) Ans.




EXAMPLE 3.11

Example 3.9 treated a plate at normal incidence to an oncoming flow. In Fig. 3.10 the plate is
parallel to the flow. The stream is not a jet but a broad river, or free stream, of uniform veloc-
ity V = Upi. The pressure is assumed uniform, and so it has no net force on the plate. The
plate does not block the flow as in Fig. 3.9, so the only effect is due to boundary shear, which
was neglected in the previous example. The no-slip condition at the wall brings the fluid there
to a halt, and these slowly moving particles retard their neighbors above, so that at the end of
the plate there is a significant retarded shear layer, or boundary layer; of thickness y = 8. The
viscous stresses along the wall can sum to a finite drag force on the plate. These effects are
illustrated in Fig. 3.10. The problem is to make an integral analysis and find the drag force D
in terms of the flow properties p, Uy, and 8 and the plate dimensions L and b."°

Solution

Like most practical cases, this problem requires a combined mass and momentum balance.
A proper selection of control volume is essential, and we select the four-sided region from

P=P,
Y Streamline just Uy
outside the
shear-layer region
Y
Oncoming .
stream i Boundary layer 3
parallel 1 i where shear stress
to plate 4 is significant
p! - G g u(y)
r i &
) X
0 1t

Plate of width b

0 to i to & to L and back to the origin 0, as shown in Fig. 3.10. Had we chosen to cut
s e
across horizontally from left to right along the height y = h, we would have cut through the
shear layer and exposed unknown shear stresses. Instead we follow the streamline passing
through (x, y) = (0, /), which is outside the shear layer and also has no mass flow across
it. The four control volume sides are thus
N

1. From (0, 0) to (0, h): a one-dimensional inlet, V - n = —U,. n: ‘)‘k%
2. From (0, h) to (L, 8): a streamline, no shear, V + n = 0.
3. From (L, 8) to (L, 0): a two-dimensional outlet, V * n = +u(y).
4. From (L, 0) to (0, 0): a streamline just above the plate surface, V - n = 0, shear forces

bt iy

sw_the_wfm acting from the plate onto the retarded fluid.

The pressure is uniform, and so there is no net pressure force. Since the flow is assumed
incompressible and steady, Eq. (3.37) applies with no unsteady term and fluxes only across
sections 1 and 3: o 2

2F

Min Mot

" 1
-D = pJ‘ u(0, y)(V +n)dA + pJ u(L,y) (V + n)dA
1 3

h 8
pJ Uo(=Ugp)b dy + p[ w(L, y)[+u(L, y)]b dy
0 0

Evaluating the first integral and rearranging give
5
D = pUgbh — pr wdy |=y (1
()

This could be considered the answer to the problem, but it is not useful because the height
h is not known with respect to the shear layer thickness 8. This is found by applying@x’s
conservatiom>since the control volume forms a streamtube:

h b
pJ (V-n)dA=0= pj (=Upbdy + pJ ubdy | -,
CS 0 0
k)

or Uoh = I Wyl 2)
0
after canceling b and p and evaluating the first integral. Introduce this value of % into Eq. (1)
for a much cleaner result:

B

D= pr‘ WUy — wydy |~y Ans. (3)
0

This result was fit derived by Theodore von Kama in 1921. ' It relates the friction drag

on one side of a flat plate to the integral of the momentum defiit pu(U, — u) across the

trailing cross section of the flow past the plate. Since U, — u vanishes as y increases, the

integral has a finite value. Equation (3) is an example of momentum integral theory for

boundary layers, which is treated in Chap. 7.
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EXAMPLE 4.5

Take the velocity field of Example 4.3, with b = 0 for algebraic convenience

u=a(x* —y? v = —2axy w=0

and determine under what conditions it is a solution to the Navier-Stokes momentum equa-
tions (4.38). Assuming that these conditions are met, determine the resulting pressure dis-

tribution when z is “up” (g, = 0, g, = 0, g. = —g).
Solution
* Assumptions: Constant density and viscosity, steady flow (x and arindependent of time).

* Approach: Substitute the known (u, v, w) into Eqs. (4.38) and solve for the pressure gra-
dients. If a unique pressure function p(x, y,
* Solution step 1:

z) can then be found, the given solution is exact.
Substitute (u, v, w) into Egs. (4.38) in sequence:

ap du du D) 3
p(O)*;+;L(2a*2a+O):p u—+v—)=2ap + xy)
X

p(0) — —+ O +0+0) = p(u— +u(9 ): 2a%p(%y + )
Y
aw
p(— g)*—+,.t(0+0+0)7p<u—+ )*O
a. ady

Rearrange and solve for the three pressure gradients:

9
L= 2dp(Py + )
ay

8[;7

8n_ 9 _ _
2 = P8

—— = —2a’p(x’ + %)
ax

@)
e Comment 1: The vertical pressure gradient is hydrostatic. (Could you have predicted this by
noting in Eqs. (4.38) that w = 0?) However, the pressure is velocity-dependent in the xy plane.
* Solution step 2: To determine if the x and y gradients of pressure in Eq. (1) are compati-
ble, evaluate the mixed derivative,(azp/ax dy); that is, cross-differentiate these two equations:

a(op\ @ N
Hla)= a»[ 2a°p(x* + xy%)] = —4d’pxy
a (0 a

g(f) = ax[ 2a%p(x%y + y*)] = —4d’pxy

* Comment:

ﬂ:i?b, T fstgn,

v

AR

av av

a_.

52)

* ox? dt =
<(’)2v dv §P24
22y =P, tmEsss
ax dt
<r’?2w dw
(2 X dt

Comment 2: Since these are equal, the given velocity distribution is indeed an exact
solution of the Navier-Stokes equations.

Solution step 3:  To find the pressure, integrate Egs. (1), collect, and compare. Start with
aplax. The procedure requires care! Integrate partially with respect to x, holding y and z
constant:

4 ok
= f ~24%( + ) da,, = ,Mp(xz + XT‘) +H0D @

Note that the “constant” of integration f; is a function of the variables that were not inte-
grated. Now differentiate Eq. (2) with respect to y and compare with dp/dy from Eq. (1):

[ oh _op
& loy = —2a% 2y + a)f & loy = —2d%( + ¥
of 4
Compare: di; = -2d%y or fi= v(idv\ = —Zazp'L + £(2)
7 y
Collect terms: So far p = 72u3p(4 + T s ) + fo(2) (3)

This time the “constant” of integration f5 is a function of z only (the variable not inte-
grated). Now differentiate Eq. (3) with respect to z and compare with dp/dz from Eq. (1):

dfy _ dp

e >

9
o =22

loy=—-pg or  fi=—pgzt+C @
where C is a constant. This completes our three integrations. Combine Egs. (3) and (4) to
obtain the full expression for the pressure distribution in this flow:

P, y,2) = —pgz — 3@°p(x* + y* + 229 + C Ans. (5)

This is the desired solution. Do you recognize it? Not unless you go back to the begin-
ning and square the velocity components:

WA+ w = V= a0+t + ) ©)
Comparing with Eq. (5), we can rewrite the pressure distribution as
p+3pV +pgz=C @)

This is Bernoulli’s equation (3.54). That is no accident, because the velocity
distribution given in this problem is one of a family of flows that are solutions to the
Navier-Stokes equations and that satisfy Bernoulli’s incompressible equation everywhere
in the flow field. They are called irrotational fiws, for which curl V.=V x V = 0. This
subject is discussed again in Sec. 4.9.
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EXAMPLE 4.7

If a stream function exists for the velocity field of Example 4.5
=a®—y) v=—-2axy w=0

find it, plot it, and interpret it.

Solution

s A 1 > Incompressible, two-di ional flow.

e Approach: Use the definition of stream function derivatives, Egs. (4.85), to find
P(x, y).

* Solution step 1: Note that this velocity distribution was also examined in Example 4.3.
It satisfies continuity, Eq. (4.83), but let’s check that; otherwise s will not exist:

> > a
2 — V)] + —(—2axy) = 2ax + (—2ax) =
[a(x* = ¥9)] Hy( axy) = 2ax + (—2ax) =0

Thus we are certain that a stream function exists.

* Solution step 2: To rile out Eqgs. (4.85) and integrate:

u v a

ax

ax  dy

d > >
=(,—¢=ax'*av' (1)
ady i
d
= (—W —2axy ?)
ax
and work from either one toward the other. Integrate (1) partially
3
= ax’y — % + flx) 3)
Differentiate (3) with respect to x and compare with (2)
42 y
a— = 2axy + f'(x) = 2axy %)
X
Therefore f'(x) = 0, or f = constant. The complete stream function is thus found:
Y= u(x ) = —) T (¢ éﬁm Jbﬁ‘i Ans. (5)
8
To plot this, set C = 0 for convenience and plot the function
2 3
3y —y = 2 (6)
a

for constant values of . The result is shown in Fig. E4.7a to be six 60° wedges of cir-
culating motion, each with identical flow patterns except for the arrows. Once the stream-
lines are labeled, the flow directions follow from the sign convention of Fig. 4.9. How

The origin is a

E4.7a stagnation point
Flow around a 60° corner
/
/
/
/
/
/
/
/
/
e — Incoming stream impinging
Flow around a against a 120° corner
E4.7b rounded 60° corner

can the flow be interpreted? Since there is slip along all streamlines, no streamline can
truly represent a solid surface in a viscous flow. However, the flow could represent the
impingement of three incoming streams at 60, 180, and 300°. This would be a rather unre-
alistic yet exact solution to the Navier-Stokes equations, as we showed in Example 4.5.

By allowing the flow to slip as a frictionless approximation, we could let any given
streamline be a body shape. Some examples are shown in Fig. E4.7b.
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Buckingham Pi Theorem
The procedure most commonly used to identify both the number and form of the
appropriate non-dimensional parameters is referred to as the Buckingham Pi
Theorem. The theorem uses the following definitions: F =foLviem

= the number of independent variables relevant to the problem #-=5

= the number of independent dimensions found in the n variables j=%

—s

= the reduction possible in the number of variables necessary to be
considered simultaneously

e

k = the number of independent IT terms that can be identified to describe the
problem, k = n-j k=2, AAMk k=34

EXAMPLE 5.2 This is exactly the right pi group as in Eq. (5.2). By \arymg the exponent on F, we could
- have found other equivalent groups such as ULp"/F"%.
Repeat the development of Eq. (5.2) from Eq. (5.1), using the pi theorem. Finally, add viscosity to L, U, and p to find IL,. Select any power you like for viscos-
ity. By hindsight and custom, we select the power —1 to place it in the denominator:
Solution I, = LU n " = LT Y ML ML T~ = MPL°T®
Step 1 Write the function and count variables: E =
quate exponents:
F=f(L, U, p, u) there are five variables (n = 5) e a+b-3c+1=0
Step 2 List dimensions of each variable. From Table 5.1
Mass: e¢=1=0
F L U p m
= | | | | Time: —b A il=0)
wery | | oy ey | ey
from which we find
Step 3 Find j. No variable contains the dimension ©, and so j is less than or equal to 3 (MLT).

We inspect the list and see that L, U, and p wn a pi group humhe’”ﬁnly p con-
tains mass and only U contains time] Therefore j does equal 3, andn —j=5-3=2=k

The pi theorem guarantees for this problem that there will be exactly two independent 887 Therefore Ans.

dimensionless groups.
5 p . . . . . N Step 6 We know we are finished; this is the second and last pi group. The theorem guarantees that
Step 4 Select repeating j variables. The group L, U, p we found in step 3 will do fine. (i e ol el et s G 6 (b vl o
Step 5 Combine L, U, p with one additional variable, in sequence, to find the two pi products. F pUL

First add force to find IT;. You may select any exponent on this additional term as you 252 = &’(_> Ans.
g ] A 3 pUL "
please, to place it in the numerator or denominator to any power. Since F is the output, or
dependent, variable, we select it to appear to the first power in the numerator: which is exactly Eq. (5.2).

0, = LU%F = (LT "Y' (ML ™ MLT?) = M°L°T°

Equate exponents:

Length: @ap )= atoar il =)
Mass: @1l =)
Time: =b -2=0

We can solve explicitly for

Therefore I, =L % 'F=—==Csr Ans.
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6. The Moody Chart
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Fig. 6.13 The Moody chart for pipe friction with smooth and rough walls. This chart is identical to Eq. (6.48) for turbulent flow.

(From Ref. 8, by permission of the ASME.)
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7. Non - Giraular Ducts .

For flow in non-circular ducts or ducts for which the flow does not fill the entire
cross-section, we can define the hydraulic diameter Dy, as

e

D, h P

where

A = cross-sectional area of actual flow,

P = wetted perimeter, i.e. the perimeter

on which viscous shear acts

e A

Cross sectional area -A

Perimeter - P

With this definition, all previous equations for the Reynolds number, Re, friction

factor, f, and head loss, h¢, are valid as previously defined and can be used on
both circular and non-circular flow cross-sections.

Probably the simplest noncircular duct flow is fully developed flow between parallel
plates a distance 2/ apart, as in Fig. 6.14. As noted in the figure, the width b >> h, so
the flow is essentially two-dimensional; that is, # = u(y) only. The hydraulic diameter is

_da_ L 4ebh

D - =
" T oSe2b + 4k

(6.62)

that is, twice the distance between the plates. The pressure gradient is constant,

(—dpldx) = AplL, where L is the length of the channel along the x axis.

______

u(ry

The hydraulic diameter for an annulus is

D/x -
2m(a + b)

8. Minor or Local Losses jn Pipe Systems. e
rotio Of head [oss f/1m=4F/[P5) , Loss weﬁicimf k= V32

B 4m(a® — b*

)

"
-

-~

=2(a —b)

[

VI.
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With this result and the definition of the boundary layer thickness, the following
key results are obtained for the| minar|flat plate boundary layer:

Local boundary layer thickness Ox = 5x
" JRe,
Local skin friction coefficient: C 0.664
- fx =
(defined below) 1[ Rex
Total drag coefficient for length L ( integration 1.328
of Ty, dA over the length (2)fthe plate, per unit Cp = Re
area, divided by 0.5 p U ) X
7, (X Fn/ A
where by definition Cf ( 2) and CD = 1D—2
pU 2 1Y Uoo
A: TergSrt,

With these results, we can determine local boundary layer thickness, local wall
shear stress, and total drag force for laminar flow over a flat plate.

Laminar Turbulent
0.16x
6 )= 5x (S x)=
(x) Re. ( ) 1/7
0.664 C 0.027
Cy = fe SR
Re, Re,
C - 1.328 C 0.031 for turbulent flow over
D= D=5 17 entire plate, 0 — L, i.e.
Re Re/ assumes turbulent flow

in the laminar region
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Cihe mzbcﬁg?z%m’mgwtion of a pressure pulse of infinitesimal strength though o still fluiel
ambinity . PAC= (f+aP)A)L-4Y) = sV=CFp
mamertum: 2 F =M [Vot—Vin) =7 PA-(P1aDA=(fRe) (L-aV-c) => &P=Pca/

a 4?90 L 8 )
:r;(w—‘ir?) > A =%p . =

= (=

frfect gns

k73 B

ho* the stagnation enthalpy of the flow.

h+£y" = ho=cinst
porfets gus's h=pT = G4 =G 1 . ampornture absmulie 2oro” V= Cohe) = <L T)*
|G
= } adiobatic flow

(Fxk-hsks)

} Tentropic flow.
(35, Do udiiah, B £ o F R 5% o 1)



4. Isentropic Flow with Area Changes. &P622~623  (Fy 1s)
Comtinuity - CaVmAR) =m = unst = ’L s a3 olif =0
momentum : «%EwoW—o
sund speed :  dp =0,

o
Z %-- > -G BP0

-
S The /\/rmmA Shock Wowe

B o Lk k)]

I
v _(RDMart>
Ma. = NY D)

]w})k B>

% 0 peragim of &nvergmj ond Diverging Mozzles. Toble B\

@><\|7 AB:B=Fe . Ssubsonic Thrwgh the nez2le | iseﬁtwpic,
e C: Po=Fe . At thraatichoked) , sonic ondl Ma is unity .
W 098 - subsmic and Jsentrpic .
P.E:O (Befoe throaw)  subsonic . - TableB>
At thoat, same as (C) . A shuck wave formed in ~8
throat ~©: supersonic and accelerating.
® subsmic and decelernting.
0.9.9: isentyopic , shock: not isertnpic.
F: At the exit, normal shock . Before shock
isentropic and supersonic 5 after shock , subsomic.
O a series of two-dimensional shocks outside no22le .
nozzle : isentropic
H: design pressure. yatip. nizzle: jsentropic.
1: come as (), shocks : decelerate .

(©)

Shock: nat; isertropic and decelerote



